Published: 2018-11-20 07:47 |
Category: Projects | Tags: coding, photos, raspberry pi, self host, setup
Last night, I got [a self-hosted photo sharing site](https://photos.ohheybrian.com) up and running on my raspberry pi 3. You can see more about that process [here](https://blog.ohheybrian.com/2018/11/forget-the-mac-mini-bring-on-the-raspberry/).
Putting it on the real, live Internet is scary. Securing a server is no small task, so I took some steps based on [these tips](https://serverfault.com/questions/212269/tips-for-securing-a-lamp-server) to make sure I don't royally get myself into trouble.
(I have a stinking feeling that posting this exposes vulnerability even more, but c'est la vie.)
To start: new user password. Easy to do using `sudo raspi-config` and going through the menus. It's big, it's unique and no, I'm not giving any hints.
As for updating the OS, I have a cron job which runs as root to update and reboot every couple of days. Lychee is [active on GitHub](https://github.com/lycheeorg/lychee) and I've starred it so I'll get updates with releases, etc. I also took some steps to separate the Apache server from the OS.
Putting a self-hosted server online requires port forwarding. That involves opening specific ports to outside traffic. I only opened the public HTTP/HTTPS ports. Several sites say to open SSH ports, but I think that's where I feel very timid. I don't plan on running anything insanely heavy which would require in-the-moment updates from somewhere remote. (There's also the fact that my school network blocks SSH traffic entirely, so there's even less reason to enable it.)
Once the ports were open, I had to find my external IP address and update my DNS Zone records on [Reclaim Hosting](https://reclaimhosting.com). By default, Comcast assigns dynamic IP addresses so they can adjust network traffic. Most tutorials encourage users to request static IPs for home servers, but others say they've used a dynamic address for years without issue. I'll see if I can work myself up to calling.
Anyways, I logged into my cPanel and added an A record for a new subdomain: [photos.ohheybrian.com](https://photos.ohheybrian.com) that pointed to my public IP address. The router sees that traffic coming in and points it at the Raspberry Pi. I tested on my phone and, hey presto, it worked.
Opening HTTP/HTTPS ports came next. It's easy to get unencrypted traffic in and out. But, like the rest of my sites, I wanted to make sure they were all SSL by default. I could't assign a Let's Encrypt certificate through Reclaim because it wasn't hosted on their servers. [The Internet came through with another good tutorial](https://www.tecmint.com/install-free-lets-encrypt-ssl-certificate-for-apache-on-debian-and-ubuntu/) and I was off.
First, I had to enable the `ssl` package on the Apache server:
Once it can accept SSL traffic, it was time to install the Let's Encrypt package, which lives on GitHub:
I then had to install the Apache2 plugin:
From there, the entire process is automated. I moved into the install directory and then ran:
It works by verifying you own the domain and then sending the verification to the Let's Encrypt servers to generate the certificate. The default life is three months, but you can also cron-job the renewal if nothing about the site is changing.
After I was given the certification, I went to https://photos.ohheybrian.com and got a 'could not connect' error, which was curious. After more DuckDuckGoing, I realized that SSL uses a different port (duh). So, Back to the router to update port forwarding and it was finished.
There are several steps I want to take, like disaggregating accounts (one for Apache, one for MySQL, one for phpMyAdmin) so if one _happens_ to be compromised, the whole thing isn't borked.
---
_Featured image is They Call It Camel Rock flickr photo by carfull...in Wyoming shared under a Creative Commons (BY-NC-ND) license _